Metrologia

Zephyr III Scanner's


Com a linha de scanners 3D Kreon Zephyr III, você pode otimizar o uso e, portanto, a lucratividade de um único scanner usando-o em uma CMM e em um braço de medição Kreon Ace. Os extraordinários recursos de digitalização Read more

Novo SI


Em 20 de Maio de 2019 o Sistema Internacional de Unidades foi redefinido e, a partir desse momento, todas as 7 unidades de base passaram a ser definidas em relação a constantes fundamentais da física, libertando o SI da Read more

NC Measure


O uso de técnicas de apalpação combinadas com software de metrologia permite que a máquina-ferramenta se torne mais produtiva e reduz a necessidade de medir peças na CMM.  NC Read more

ZEPHYR III 50


Alta precisão (5 micra) e alta resolução (15 micra) Scanner on Read more

Vamos falar de metrologia?


Bate papo sobre o dia-a-dia em salas de metrologia na Read more

Sistema modular de fixação


Versatilidade e facilidade para a festa para medição de múltiplas Read more

Calibrar, verificar, corrigir. Qual a diferença?


Verificar, calibrar, ajustar são termos comumente usados em salas de medição, mas ainda há alguma confusão na aplicação dos conceitos. De acordo com a fonte primordial para a metrologia, o VIM: calibração: Operação que estabelece, sob condições especificadas, numa primeira Read more

Projetos robustos criam produtos e processos de fabricação e medição robustos


O que faz um produto ser robusto em temos de projeto e/ou processo de fabricação e controle de qualidade? Tolerâncias apertadas? Salas de metrologia, nível "NASA"? Inspetores e metrologistas intergaláticos? Há quem diga que sim. Por outro lado há um Read more

Como escolher a fixação da peça para medição na CMM?


Um dispositivo de fixação, ou “work-holding” de acordo com a wikipédia, é um dispositivo de “retenção de trabalho” ou suporte usado na indústria de fabricação. Os dispositivos são usados para localizar com segurança (posicionar em um local ou orientação Read more

Scanning for Inspection - by Info for Moldmakers


Excelente artigo para entender as semelhanças e diferenças entre medição por contato e escaneamento sem contato. Boa leitura Read more

Coord3 on Metrology News - Online Magazine


Com a chegada do novo diretor, a Coord3 tem nova estratégia para posicionamento no mercado mundial e a Métrica Latino Americana continua como representante e assistência técnica autorizada no Read more

ArcoCad v3.7 – Mapa de Cores

Adilson Pimentel Arco, Artigos Metrologia, Artigos Tecnicos Deixa sua mensagen   , , ,

Novo SI

Adilson Pimentel Artigos Metrologia, Artigos Tecnicos Deixa sua mensagen   , ,

Em 20 de Maio de 2019 o Sistema Internacional de Unidades foi redefinido e, a partir desse momento, todas as 7 unidades de base passaram a ser definidas em relação a constantes fundamentais da física, libertando o SI da definição de unidades com base em medidas materializadas. No dia 20 de Maio de 2021 saiu a versão em português do documento que descreve este novo SI, disponível no link abaixo.

https://www.gov.br/inmetro/pt-br/centrais-de-conteudo/publicacoes/documentos-tecnicos-em-metrologia/si_versao_final.pdf

Fonte: mensagem de Junho da lista dos “Metrologistas sem Fronteiras”. Escrita por André Roberto de Souza.


NC Measure

Adilson Pimentel Artigos Metrologia Deixa sua mensagen   , , , , , , , ,

O uso de técnicas de apalpação combinadas com software de metrologia permite que a máquina-ferramenta se torne mais produtiva e reduz a necessidade de medir peças na CMM. 

NC MEASURE


Vamos falar de metrologia?

Adilson Pimentel Artigos Metrologia, Artigos Tecnicos Deixa sua mensagen   , , , ,

Bate papo sobre o dia-a-dia em salas de metrologia na indústria.


Calibrar, verificar, corrigir. Qual a diferença?

Adilson Pimentel Artigos Metrologia Deixa sua mensagen   , , , ,

Verificar, calibrar, ajustar são termos comumente usados em salas de medição, mas ainda há alguma confusão na aplicação dos conceitos. De acordo com a fonte primordial para a metrologia, o VIM:

  • calibração: Operação que estabelece, sob condições especificadas, numa primeira etapa, uma relação entre os valores e as incertezas de medição fornecidos por padrões e as indicações correspondentes com as incertezas associadas; numa segunda etapa, utiliza esta informação para estabelecer uma relação visando a obtenção dum resultado de medição a partir duma indicação.
  • verificação: Fornecimento de evidência objetiva de que um dado item satisfaz requisitos especificados.
  • correção: Compensação dum efeito sistemático estimado.

E na prática? Quer dizer o quê? Vamos começar pelo mais simplificado. A verificação pode e, diria que deveria, ser feita  pelo metrologista, periodicamente. Pode ser um teste complexo, normalizado , ou um teste simples e de fácil execução que dê a possibilidade de acompanhar o desempenho do sistema de medição. Um teste que sugiro, por exemplo, é a medição de uma peça qualquer logo após a finalização do serviço de correção. A peça deverá ser mantida em condições adequadas de conservação, e ser medida periodicamente. Não interessa nesse caso, que seja uma peça com erro “zero”, em termos de fabricação. Esse teste tem o objetivo de monitorar os valores encontrados pelo sistema de medição ao longo de um período. Com base nessa informação, é possível por exemplo determinar com mais precisão, o período entre uma correção e outra.

Então já conseguimos verificar nosso sistema de medição e decidir quando fazer a correção. A correção, ou ajuste são os procedimentos para que o sistema de medição apresente resultados confiáveis dentro das especificações de fabricação, próprias de cada instrumento, ou sistema. No caso específico de cmm’s, além da manutenção mecânica e/ou eletrônica, é necessário garantir que os desvios ( perpendicularidade ou “esquadro” entre eixos, retilinidade das guias, desvios de escala, etc…) Sejam compensados por “mapas de compensação geométrica”. A aplicação do mapa de compensação geométrica, faz com que os resultados sejam dentro da especialização do fabricante.

Nesse ponto, já temos a cmm corrigida e verificada. Precisamos agora comprovar e documentar. É hora de calibrar, ou certificar através da comparação com artefatos, ou padrões rastreados. Comumente no Brasil o padrão de rastreabilidade é através de certificação RBC (ISO17025).

A importância em saber aplicar esses conceitos é justamente saber quem pode e deve fazer.

A verificação pode ser feita pelo próprio metrologista com recursos próprios.

A correção deve ser executada pelo fabricante e/ou empresa autorizada pelo fabricante. Na prática há empresas oferecendo unicórnios a preço de banana. Por isso é bastante importante saber o que comprar como serviço. Algumas perguntas básicas podem livrar o metrologista, geralmente responsável pela avaliação técnica, de uma escolha infeliz:

1- a empresa prestadora do serviço é fabricante e/ou autorizada pelo fabricante?

2- sua empresa prestadora do serviço tem know-how e/ou acesso para a correção geométrica completa?

3- quanto tempo é estimado para a correção?

Sobre a resposta da 1a pergunta, você leva seu VW em uma oficina GM? Pois é, fabricantes têm know-how sobre a tecnologia desenvolvida, desconfie de empresa prestadora que faz tudo. Outra dica é para a resposta da 2a pergunta. Se a empresa prestadora não faz correção ou diz que não precisa, busque mais informações. Pode evitar dor de cabeça.

Agora que já corrigimos e verificamos é necessário certificar. Se a certificação através da comparação com padrões rastreados for suficiente para atender o sistema de qualidade da sua empresa, exija a cópia dos padrões juntamente com o documento de certificação. Em caso mais comum, é necessário rastreamento RBC, nesse caso somente um laboratório com certificação RBC poderá emitir o documento que comprova a rastreabilidade.

Conhecimento dos conceitos só tem valor se forem base para decisões práticas. E trabalhamos em ambientes em que tempo e custo são outras palavras constantes. Outros textos relacionados


Projetos robustos criam produtos e processos de fabricação e medição robustos

Adilson Pimentel Artigos Metrologia Deixa sua mensagen   , ,

O que faz um produto ser robusto em temos de projeto e/ou processo de fabricação e controle de qualidade? Tolerâncias apertadas? Salas de metrologia, nível “NASA”? Inspetores e metrologistas intergaláticos? Há quem diga que sim.

Por outro lado há um consenso de que produtos e processos robustos são criados a partir de projetos robustos. E o que seria um projeto robusto? Um projeto robusto é aquele que tem por base a adequação das tolerâncias ao nível necessário para atender aos requisitos de funcionalidade e produção de um determinado produto.

Você saberia onde é o primeiro lugar onde se observa, na prática, a robustez de um projeto? Isso mesmo, na metrologia. Eu como metrologista, percebo estes aspectos somente quando já foram fabricadas as primeiras unidades de um produto, primeiras amostras e/ou primeiros lotes de um fornecedor. E mesmo antes de medir e/ou verificar a conformidade do produto, a escolha dos equipamentos e métodos que deverão ser utilizados, tem por base o projeto, representado nessa etapa, pelo desenho 2D e modelo CAD[link]. Ou seja, as especificações devem ser claras e inequívocas.

Você metrologista, conhece pelo menos um caso de especificação incorreta ou insuficiente para a medição de um determinado produto. Se foi difícil medir, imagine como foi fabricar.

Recomendo os textos, do prof. André Roberto de Souza(1) e do prof. João Baker(2) sobre metodologias para para definição e especificação de produtos:

(1)”Bons produtos começam por bons projetos”

(2) Ferramentas de desenvolvimento de produtos.


New Kreon ACE+

Adilson Pimentel Artigos Comerciais, Artigos Tecnicos Deixa sua mensagen   , , , , ,


Scanning for Inspection – by Info for Moldmakers

Adilson Pimentel Artigos Tecnicos Deixa sua mensagen   , , , , ,

Excelente artigo para entender as semelhanças e diferenças entre medição por contato e escaneamento sem contato. Boa leitura !


Assista a “O metro padrão foi definido errado! | História do Metro – Parte 3” no YouTube – by canal metrologia

Adilson Pimentel Artigos Metrologia Deixa sua mensagen   ,


Assista a “Dica de GD&T 1” no YouTube – by João Baker

Adilson Pimentel Artigos Metrologia, Artigos Tecnicos Deixa sua mensagen   , ,

assitir video


Assista a “ARCOCAD – Construindo e medindo uma reta projetada em um plano” no YouTube

Adilson Pimentel Arco, Artigos Metrologia, Artigos Tecnicos Deixa sua mensagen   , , , ,


Zephyr III na metrology news magazine

Adilson Pimentel Artigos Comerciais, Artigos Metrologia Deixa sua mensagen   , , , , , ,

https://metrology.news/3d-cmm-scanner-geared-for-productivity/


Integrando CMMs com operações de produção

Adilson Pimentel Artigos Metrologia, Artigos Tecnicos Deixa sua mensagen   , , , , , ,

Nota da tradução:

A ind. 4.0 está levando as cmm’s para as linhas de produção. Esta que já foi uma tendência, ganha força, baseada no desenvolvimento de tecnologias de construção das cmm’s para suportar os ambientes fabris e softwares capazes de disponibilizar em tempo real, os resultados de produção. Alguns fabricantes como a inglesa LK, apresentam eixos em cerâmica, garantia de 10 anos para as cmm’s ou a italiana Metrostaff, apresenta o ArcoCAD e Metrology Gate, softwares capazes de suprir as demandas de rapidez da disponibilização de dados, que a ind 4.0 exige a metrologia 4.0 deve suprir. Este são apenas alguns exemplos do desenvolvimento das tecnologias que possibilitam a instalação das cmm’s diretamente nas linhas de produção.

___________________________________________________________

Medir o trabalho no chão de fábrica pode aproximar a aplicação da medida em tempo real, para que os resultados tenham mais valor no controle do processo. E comparado com outros sistemas de medição que podem ser usados ​​em operações de manufatura, a CMM oferece a maior flexibilidade. Uma CMM pode medir com precisão objetos de tamanhos e configurações geométricas variadas, e pode descrever a relação entre recursos separados de uma peça de trabalho. Essa flexibilidade, juntamente com a velocidade de uma CMM em relação às técnicas de medição com instrumentos ou aos medidores fixos, permite que a medição seja usada com eficiência de custo para refinar o processo e analisar as tendências do processo.

A integração da velocidade, flexibilidade e precisão das CMMs às operações de chão de fábrica tem sido uma tendência contínua. A integração do chão de fábrica faz com que a função de medição seja parte integrante do processo de usinagem. A CMM pode estar fisicamente conectada, como em uma linha de transferência, ou pode ser conectada por algum tipo de mecanismo de transferência, como um carrinho ou um veículo guiado por trilho, que move o trabalho para a CMM a partir de uma máquina operatriz.

Além do benefício óbvio do controle de processo em tempo real ou próximo ao tempo real, o medidor integrado de chão de fábrica com uma CMM tem várias vantagens. No chão de fábrica, a calibração é realizada com mais frequência pelos próprios operadores de máquinas-ferramenta, reduzindo a necessidade de inspetores especiais. Outro benefício do medidor de chão de fábrica é sua capacidade de construir um banco de dados histórico que rastreia o modo como máquinas, peças, paletes e acessórios se comportaram durante o processo de usinagem.

Tempo de Medição
Uma vantagem do medidor de chão de fábrica usando um CMM é a velocidade. As peças usinadas estão se tornando cada vez mais complexas, com mais recursos de medição e tolerâncias mais rígidas. Enquanto isso, a produção em alta velocidade com altos padrões de precisão cria uma demanda por alto rendimento de inspeção.

A vantagem mais dramática da CMM é a maior eficiência de inspeção, quando comparada com as técnicas tradicionais de ferramentas de superfície / ferramentas manuais de precisão. Por exemplo, medir a localização de um único furo usando uma mesa de desempeno e um medidor de altura pode envolver:

  • Alinhar a face da peça a 90 graus com a placa de superfície;
  • Indicar a borda superior e a borda inferior da abertura do furo usando um medidor de altura;
  • Compar as medidas a uma referência;
  • Gravar as leituras;
  • Calcular a diferença entre as medidas para encontrar a localização da linha central do furo.

 

Por outro lado, medir o mesmo furo com uma CMM básica envolve:

  • Alinhar automaticamente a peça com a CMM, medindo um plano de referência, uma linha de referência e um ponto de referência. Tempo aproximado: 30 segundos;
  • Tocar o furo em quatro pontos. Tempo aproximado: 8 segundos;
  • Pressionr o botão Imprimir para registrar a localização X, a localização Y e o diâmetro do furo.

 

A complexidade de uma peça aumenta ainda mais o tempo de inspeção para o operador usando ferramentas de medição manual. Como os medidores de altura e ferramentas de inspeção similares só medem ao longo de um único eixo, pelo menos duas configurações são necessárias para localizar detalhes na face de uma peça de trabalho. Ainda mais configurações podem ser necessárias para localizar certos detalhes. E quando vários lados de uma peça são verificados, a configuração deve ser alterada toda vez que a peça for girada. A CMM, por outro lado, pode medir múltiplas faces de uma peça sem perturbar a configuração.

Através de medições mais rápidas com menos configurações, o tempo de inspeção pode ser reduzido para apenas um décimo do tempo necessário usando técnicas de ferramentas manuais. Dez peças podem ser inspecionadas em um CMM na mesma quantidade de tempo que leva para inspecionar uma peça usando a tecnologia de mesa de desempeno.

Máquinas mais sofisticadas podem reduzir ainda mais o tempo de inspeção. O operador pode ser dispensado de tarefas demoradas, como a gravação manual de leituras, a verificação da sequência de inspeção e a realização de cálculos. Um benefício adicional das CMMs mais avançadas é a capacidade de medir comprimentos e perfis de arco. Essas rotinas são literalmente impossíveis de serem executadas usando métodos de inspeção convencionais ou até mesmo uma CMM manual.

Combater o calor e a vibração
Construir CMMs para operações de chão de fábrica é um desafio. O efeito da mudança de temperatura na máquina de medição e na peça de trabalho é o obstáculo mais difícil de superar.

Uma abordagem é compensar a expansão térmica e erros de distorção térmica por meio de sensores de temperatura colocados em pontos críticos na estrutura da máquina. Os valores de expansão e distorção que são extrapolados dos dados do sensor são usados ​​para compensar cada ponto medido, virtualmente cancelando a influência das variações de temperatura em uma ampla faixa.

Outra abordagem está relacionada à escolha de materiais na construção do CMM. Por exemplo, o projeto da CMM “One” da Brown & Sharpe é construído em torno do uso de rolamentos de aço. Todos os outros componentes do CMM têm propriedades térmicas semelhantes ao aço para minimizar os efeitos da variação de temperatura na precisão da medição. O carro do eixo X e o eixo Z são construídos a partir de um material de matriz de carboneto de alumínio / silício que exibe um coeficiente de expansão semelhante ao do aço. Ao mesmo tempo, esse material é leve, permitindo que motores menores sejam usados ​​na CMM, uma mudança que reduz ainda mais o peso da máquina e também reduz o calor gerado pela máquina.

Outro desafio em colocar CMMs de precisão no chão de fábrica é protegê-los da vibração. O projeto da máquina One depende de uma base composta de polímero de alta densidade para fornecer dez vezes mais amortecimento de vibração do que os materiais tradicionais. A proteção dessa base contra vibração se estende até mesmo à absorção de ruídos de alta frequência.

No entanto, outro desafio de design que não pode ser negligenciado está relacionado ao software. Devido à necessidade de maior acessibilidade quando um CMM é usado no chão de fábrica, o software pode desempenhar um papel tão importante quanto o do hardware. O software deve permitir que operadores de todos os níveis de habilidade obtenham resultados de inspeção precisos e repetíveis. O software da Brown & Sharpe faz isso incluindo rotinas automatizadas acessíveis por meio de uma interface gráfica de operação, bem como módulos de treinamento on-board e tutorial cobrindo tópicos antes, durante e depois da programação e coleta de dados. Um recurso especial reconhece o tipo de recurso que está sendo medido para criar uma representação gráfica desse recurso na tela do computador. A capacidade permite que o operador gire e amplie um modelo do recurso inspecionado para ver mais claramente onde a peça está tendendo para fora da tolerância.

Traduzido e adaptado de: https://www.mmsonline.com/articles/integrating-cmms-with-shopfloor-operations

Sobre o autor: Christine L. Witkos é gerente de produto da Brown & Sharpe (North Kingstown, Rhode Island).


Assista a “ArcoCAD – Criando prercursos (GOTO) em modo offline” no YouTube

Adilson Pimentel Arco Deixa sua mensagen   , , , ,


Braço de medição por coordenadas – 10 dicas para se tornar um usuário experiente – by Kreon

Adilson Pimentel Artigos Metrologia, Artigos Tecnicos Deixa sua mensagen   , , , , ,

Os braços de medição são amplamente utilizados para aplicações tão variadas quanto engenharia reversa, controle de qualidade ou prototipagem rápida, e a qualidade desses sistemas portáteis é clara. No entanto, alguns fatores podem influenciar a qualidade dos dados de braços de medição – o ambiente de trabalho, o operador, a organização de tarefas.
É por isso que abaixo a Kreon dá 10 dicas para obter os melhores resultados do seu braço de medição.

Measuring arms – 10 tips for becoming an expert user


Onde posso instalar o ARCOCAD?

Adilson Pimentel Arco, Artigos Comerciais, Artigos Tecnicos Deixa sua mensagen   , , , , , , , , , , ,


World Metrology Day – 20 May 2019

Adilson Pimentel Artigos Tecnicos, Eventos Deixa sua mensagen   ,

http://www.worldmetrologyday.org/


Metrology Gate Provides Connected CMM World – Metrology and Quality News – Online Magazine

Adilson Pimentel Artigos Metrologia, Artigos Tecnicos Deixa sua mensagen   , , , , , ,

https://metrology.news/metrology-gate-provides-connected-cmm-world/


Metrologia 4.0, estamos prontos para o próximo passo?

Adilson Pimentel Artigos Metrologia Deixa sua mensagen   , , , , , , ,

Metrologistas em geral, são alguns dos profissionais mais organizados da cadeia de produção de uma empresa. Metrologistas programadores de CMM, além de organizados devem ser metódicos. Essas características são os pré-requisitos da metrologia 4.0.
O termo Metrologia 4.0, vem sendo desenvolvido juntamente com o conceito da indústria 4.0, pois é quase impossível se pensar no desenvolvimento dos meios de fabricação sem pensar em como medir com a mesma eficiência e nível de automatização e geração de dados, que é um dos principais pilares da nova revolução industrial.
As cmm’s são, desde sua popularização na década de 90, os equipamentos com mais diversificação e grau de precisão nos mais diversos processos produtivos. Tanto que a indústria 4.0 está empurrando esta tecnologia dos laboratórios e salas metrológicas, diretamente para as linhas de produção. Mas ainda é uma etapa adiante, por enquanto ainda teremos muita medição executada nas salas de metrologia.
E nesse ponto juntamos tudo que citamos anteriormente, organização, automatização e geração de dados. Façamos a pergunta, estamos preparados para o proximo passo?
Pelo carácter diverso, a CMM já é um equipamento que gera muitos dados. Em uma sala de metrologia ativa, mede-se quase tudo do processo produtivo. Desde amostras recebidas de fornecedores, peças após setups de máquinas operatrizes, amostras das várias operações e/ou etapas de fabricação, além daquelas medições esporádicas para diagnose. Como são utilizados e/ou disponibilizados todos esses dados? Na etapa atual, a grande maioria destes dados são armazenados em forma de relatórios físicos ou digitais, porém de forma passiva. Ou seja, somente serão utilizados de forma reativa, caso seja necessário buscar o histórico de uma determinada produção.
Na indústria 4.0, a Metrologia 4.0 disponibilizará todos estes dados em tempo real para tomada de decisões quase que imediatas. Seremos avisados quando uma característica sair ou estiver tendeciando para os limites de tolerância. Saberemos, mesmo a distância, quando o equipamento estiver nos limites para uma manutenção, etc… Tudo isso através da geração de dados e conexão direta.
Então agora nós, metrologistas programadores de CMM, façamos algumas perguntas:
– as várias rotinas de medição que utilizo, são claramente identificadas?
– as rotinas de medição que utilizo, necessitam de alguma interação manual?
– os relatórios criados pelas rotinas de medição são claramente identificados?
– os relatórios criados são em meio digital?
– a localização dos relatórios é claramente estruturada?
– os relatórios estão disponíveis para os setores interessados?
Estas são algumas questões que podem indicar o quanto estamos preparados ou não para o próximo passo, a geração em massa de dados estruturados. Dados sem estruturação são um monte de números, tem quase a mesma valia da falta deles.
Então, como avalia o seu grau de preparação para o próximo passo?


Arco no YouTube

Adilson Pimentel Arco, Artigos Metrologia, Artigos Tecnicos Deixa sua mensagen   , , , ,


Avanços na medição baseada em modelos reduzem o tempo de programação da CMM

Adilson Pimentel Artigos Metrologia, Artigos Tecnicos Deixa sua mensagen   , , , , , , , ,

Nota da tradução:
Observando o cenário da nossa indústria nacional e sempre conversando com metrologistas de cmm de vários ramos, a realidade e tecnologia indicada nesse artigo está longe da maior parte de nossas engenharias e salas de metrologia. Porém precisamos conhecer o que nos falta como recursos, se quisermos avançar em conhecimento. Boa leitura!
….

Com mais horas de trabalho sendo gastas em trabalho de programação, diferenças em programas de medição criados por funcionários e programas ineficientes sendo criados devido a problemas de proficiência, a indústria passou de desenhos 2D para modelos anotados em 3D. Vários fatores, incluindo a ênfase crescente no controle de qualidade, a crescente diversidade de peças e componentes sendo medidos, o desenvolvimento de cadeias de fornecimento globais mais complexas e ciclos de vida reduzidos, levaram a uma demanda considerável por programação de medição automática em recentes anos.

O mais recente software de geração automática de programas de medição usa CAD 3D e informações de fabricação de produtos (PMI) para permitir a geração automatizada de programas de medição com apenas um clique. Um programa complexo que anteriormente levaria cinco horas para ser concluído manualmente agora pode ser concluído em 15 minutos.

Hoje, os fabricantes aeroespaciais e de defesa usam o CMM (Coordinate Measuring Machines – Máquinas de Medição por Coordenadas) para coletar dados e comparar dados com modelos de projeto assistido por computador (CAD). Líderes globais de fabricação como Boeing, Lockheed, Raytheon, Ford e Deere juntaram-se às filiais das forças armadas dos EUA para incentivar seus parceiros, fornecedores e fornecedores a usar software de geração de programas de medição automática como parte de sua estratégia de definição de produtos digitais. Estima-se que pelo menos 35% dos fabricantes de equipamentos originais da cadeia de suprimentos do Departamento de Defesa estão usando definições baseadas em modelos (MBDs).

Um MBD é um modelo anotado em 3D e seus elementos de dados associados que definem totalmente a definição do produto de uma maneira que possa ser usada efetivamente por todos os clientes de recebimento de dados no lugar de um desenho tradicional. Embora os fabricantes tenham aplicado o MBD à definição de produto por algum tempo, eles o aplicaram apenas recentemente como um processo de garantia de qualidade. O MBD é um método muito mais eficiente de obter resultados do CMM para comparação com modelos CAD.

O aumento no MBD provavelmente é atualmente mais alto nas indústrias aeroespacial e de defesa comercial, com o mercado de dispositivos médicos seguindo o exemplo.

O software de geração automática de programa de medição ignora o antigo método baseado em desenho para gerar e executar diretamente um fluxo de trabalho baseado em modelo. O CMM é configurável virtualmente. Um MBD é importado, um conjunto de regras aplicadas e combinadas ao CMM configurado e um programa de peça é gerado automaticamente. Uma segunda otimização é realizada para reduzir o número de alterações de sonda e minimizar o comprimento do caminho.

Os programadores CMM desenvolvem regras gerais e melhores práticas ao longo do tempo. O método de medição automática captura essas regras e práticas como instruções lógicas if-then. O CMM configurado, o conjunto de regras aplicadas, as configurações individuais e a própria peça são todas salvas como uma única estrutura relacionada. Uma execução simulada pode ser executada para confirmação visual. Se forem necessárias alterações adicionais, como alterar o padrão de amostragem de linhas de grade flexíveis ou alterar o número de pontos por linha, o programa poderá torná-las instantaneamente e, em seguida, gerar novamente um relatório.

Eles podem ser salvos, recuperados e reutilizados. Eles também podem ser importados e exportados, por isso são transportáveis. O conhecimento individual pode ser generalizado e se tornar algo que pode ser aplicado e reaplicado de maneira consistente dentro da empresa e em toda a cadeia de suprimentos.

O desenvolvimento de software que gera programas de peças para inspeção está mudando a relação entre pessoas e a medição de precisão com um clique. Esses softwares sofisticados reduzem o tempo de programação em pelo menos 95%, comparado com a programação usando software de uso geral, para um aumento potencial significativo na eficiência dos processos de medição.

Benefícios do MBD

O MBD permite o dimensionamento geométrico e tolerância incorporados. O modelo CAD 3D incorpora todas as informações pertinentes do produto e dados de planejamento de inspeção de alto nível. A MBD fornece aos fabricantes vários benefícios importantes, incluindo:

– Processos simplificados.O fluxo de trabalho 3D para 2D para 3D, onde tanto o MBD quanto os desenhos são ambos mestres, é eliminado. O novo fluxo de trabalho é o CMM CNC 3D para 3D. A programação que costumava levar horas para ser concluída agora pode ser realizada em minutos.
Custos de fabricação reduzidos.

– As empresas podem obter uma economia de 95% em comparação com os métodos de programação baseados em desenhos. Nenhuma CMM física necessária.

– Os fabricantes de componentes recebem um único arquivo CAD e concluem todas as etapas necessárias para construir e inspecionar uma peça.

– Todos os detalhes e notas pertinentes são transferidos para o software de inspeção, reduzindo o risco de interpretações errôneas. Mudanças de design são incorporadas automaticamente, mesmo nas partes mais complexas.

– As discrepâncias entre o desenho e o modelo CAD são eliminadas. Maior eficiência no processo de projeto para compilação e medição.

– Rastreabilidade aprimorada. Há uma leitura direta do modelo CAD para metadados, recursos e características sem má interpretação.

– Otimização. Os parâmetros do plano são fáceis de alterar. As configurações do CMM podem ser alteradas a qualquer momento.

– Automação de fluxo de trabalho. Alguns projetos hoje já são totalmente automáticos, com máquinas conversando com máquinas e humanos, para garantir que as máquinas funcionem corretamente.

– Melhor produtividade Um programador CMM é muito mais produtivo devido à automação de tarefas de programação de baixo nível.

Traduzido de: https://metrology.news/advances-in-model-based-measurement-reduces-cmm-programming-time/


Programação de GD&T em CMM

Adilson Pimentel Artigos Metrologia, Artigos Tecnicos Deixa sua mensagen   , , , , , , , ,

Sempre converso com os colegas de metrologia sobre o nível de experiência, habilidades e conhecimentos necessários para um bom metrologista programador em CMM. De fato, como muitas empresas de fabricação atestariam, um bom metrologista programador de CMM é difícil de encontrar. E quando o equipamento de inspeção é visto como uma sobrecarga, muitas empresas têm dificuldade em pagar um alto salário pelo nível de pessoal qualificado necessário para programar seus CMMs (afinal, os CMMs não estão produzindo peças!).

Um conjunto de habilidades que é crítico para a programação CMM é um profundo conhecimento do Dimensionamento e Tolerância Geométrica (GD&T).

Pode parecer óbvio que um metrologista programador de CMM precise entender GD&T, mas a profundidade do conhecimento necessário pode não ser percebida. Na realidade, um bom metrologista programador de CMM precisa entender GD&T tão bem quanto um desenhista. Um projetista precisa saber o suficiente sobre GD&T para aplicar referências e tolerâncias que idealmente reflitam a função da peça seguindo o padrão aplicável (ANSI ou ISO). O metrologista programador de CMM precisa interpretar o GD&T e, em seguida, aplicar as estratégias de medição para avaliar corretamente a conformidade da peça. Se o metrologista programador de CMM não entender as regras de GD&T, bem como o desenhista, a implementação de GD&T falhará logicamente.

Um desafio significativo surge devido aos variados “estilos” de GD&T que são usados em impressões diferentes. O metrologista programador de CMM precisa não apenas entender os padrões GD&T (por exemplo, ASME Y14.5-2009), mas também como ele é aplicado por projetistas com diferentes “filosofias” de GD&T. Freqüentemente, GD&T é aplicado de maneira ruim ou simplesmente inválida, mas o metrologista programador ainda precisa inspecionar a peça e fornecer resultados precisos. Isso significa que o metrologista programador de CMM precisa “entrar na mente” do desenhista avaliando a impressão e observando como o desenhista usa referências e diferentes tolerâncias geométricas. E pode ser necessário interpolar as lacunas ou fazer o melhor julgamento sobre o que fazer com uma chamada inválida ou incorreta.

Em muitos casos, a única maneira de trabalhar adequadamente em callouts de GD&T ruins / inválidos é obter esclarecimentos do desenhista. Mas, muitas vezes, isso simplesmente não é uma opção. Assim, os metrologistas programadores de CMM precisam tomar as melhores decisões possíveis e seu nível de conhecimento e experiência em GD&T faz uma enorme diferença. E, claro, eles também devem documentar claramente os métodos usados, especialmente quando o GD&T não é claro ou inválido. A realidade muitas vezes não dita é que, dependendo de coisas como alinhamentos de dados e cálculos de recursos, pode haver resultados significativamente variados em qualquer parte específica.

A última coisa que alguém quer é um CMM que simplesmente produz números. Uma vez que a CMM obtém a reputação de ser um gerador de números aleatórios, pode ser difícil restaurar seu lugar de importância para a manufatura.

Tomar decisões para a programação de CMM com GD&T pode ser bastante difícil. Quanto mais o metrologista programador de CMM entende o GD&T e como ele é aplicado na indústria, maior a probabilidade de que ele seja capaz de criar um programa de CMM que determine adequadamente a conformidade da peça. Também é importante que o metrologista programador de CMM possa fornecer resultados que forneçam um feedback claro àqueles na manufatura para monitorar e melhorar os processos. Os números que as necessidades de fabricação para o feedback do processo podem ser bem diferentes daqueles que determinam a conformidade da peça. Se bem implementado, os CMMs podem fornecer valor significativo de fabricação.

A experiência em GD&T é apenas um dos componentes críticos para uma boa programação em CMM.

Texto traduzido e adaptado de:
Jordan Pepin, GDTP-S, Presidente da Applied GD & T, LLC


NIST metrology toolbox

Adilson Pimentel Artigos Metrologia, Artigos Tecnicos Deixa sua mensagen   , ,
O NIST (Instituto de Nacional de Tecnologia nos EUA) disponibiliza na sua home page uma seção com ferramentas computacionais e literatura relacionados a temas de metrologia e projetos de sistemas mecânicos de precisão. Link:http://emtoolbox.nist.gov/
Ainda no website do NIST pode-se acessar uma grande quantidade de artigos abordando os mais variados temas nas áreas de metrologia, equipamentos de medição, normas de teste, GD&T, algoritmos de cálculo geométrico, estatísticas, projetos de mecânica de precisão, e muitos outros.

Link: http://www.nist.gov/publicatio n-portal.cfm

By: Metrologistas sem fronteiras ( André R. Souza)


ArcoWiki

Adilson Pimentel Arco, Artigos Tecnicos Deixa sua mensagen   , , ,

A enciclopédia virtual do ArcoCad.


Scanning arm – Ace Skyline – Kreon – scan wide scan fast

Adilson Pimentel Artigos Comerciais, Artigos Metrologia, Artigos Tecnicos Deixa sua mensagen   , , ,

 


Conservação e manutenção da CMM

Adilson Pimentel Artigos Metrologia, Artigos Tecnicos Deixa sua mensagen   , , ,

No tópico de manutenção, é importante diferenciar entre manutenção preventiva e reativa. A manutenção reativa é o processo de reagir a equipamentos defeituosos, ineficazes ou danificados e repará-los ou substituí-los para que a função pretendida seja alcançada.

Essencialmente, a manutenção reativa ignora quaisquer medidas preventivas e simplesmente lida com um problema ou questão quando é relatada, enquanto na manutenção preventiva, o principal objetivo da manutenção é evitar ou mitigar as conseqüências da falha do equipamento. O trabalho de manutenção preventiva inclui testes, medições, ajustes e substituição de peças com o objetivo de manter equipamentos e instalações em condições operacionais satisfatórias.

Cuidados do dia-a-dia para a CMM

Como acontece com todas as máquinas eletromecânicas, uma Máquina de Medição por Coordenadas (CMM) está sujeita a influências ambientais e de uso que, com o tempo, podem causar falhas na máquina durante a operação. Muitos fatores externos influenciam o desempenho de um CMM. São vibrações, flutuações de temperatura, contaminação, colisões, poeira, umidade, uso e desgaste.

Além de maximizar o desempenho e a vida útil da máquina, a manutenção regular aumenta a segurança da máquina, reduz o tempo de inatividade e avarias não planejadas, monitora e analisa falhas progressivas, ajuda no planejamento de peças sobressalentes e seu custo pode ser planejado.

Uma boa manutenção ajuda a economizar custos, caso seu processo de qualidade, na fabricação depende da CMM e de outros processos de medição. Ao possuir uma CMM, a falha em reconhecer a importância do serviço e manutenção periódicos pode levar a avarias regulares até mesmo da melhor CMM e dar origem a muitos esforços de manutenção reativos.

A quebra de sua CMM também significa a quebra de sua cadeia de qualidade de fabricação, afetando pesadamente e indiretamente as máquinas de fabricação, aumentando seus custos gerais de avaria. Em vez de combate a incêndios constante, colocando pressão sobre o prestador de serviços e seus clientes, realizar uma análise de causa raiz hoje para uma solução mais permanente.

Quatro dicas de conservação e manutenção para a CMM, que podem ser feitas pelo metrologista:

1. Guia ou pista dos patins

A pista é parte da mesa de medição e deve ser limpo da mesma forma que a mesa de medição. Partículas de poeira e a menor das rebarbas nos entalhes podem danificar os patins de ar. Limpe a pista diariamente ou, se necessário, com mais freqüência.

2. Pontas de medição ou stylus

As pontas devem ser manuseadas com cuidado. Se for exercida força, a fixação colada entre a ponta da caneta e o eixo da ponta pode se separar e o eixo da ponta pode dobrar ou até mesmo quebrar. Não exerça força durante a limpeza.

Limpe as pontas com um pano sem fiapos. Use um agente de limpeza, se necessário. Verifique se a ponta do stylus está livre de resíduos de agente de limpeza. Se o material da peça de trabalho se assentar na ponta, ele poderá ser removido com solventes especiais. Um depósito de alumínio pode ser removido com solução de NaOH a 10 por cento (solução de hidróxido de sódio) ou com solução de KOH a 10 por cento (solução de hidróxido de potássio) .Certifique-se de que a exposição às soluções não seja muito longa, pois podem atacar o adesivo usado para colar a ponta. para o eixo do stylus Para limpeza, proceda da seguinte forma:

Use luvas de borracha e óculos de segurança.

Mergulhe um pano em um dos dois solventes e limpe o elemento da sonda com o pano. Lave a ponta do stylus imediatamente com água e seque-a.

3. furos roscados

A poeira pode se acumular nos furos e roscas rosqueados. A fim de garantir o perfeito estado dos fios, remova todos os depósitos de sujeira dos furos roscados com um aspirador de pó.

4. Esfera de Referência

A esfera de referência deve estar limpa e em perfeitas condições para garantir a qualificação correta.

Limpe a esfera de referência com um pano sem fiapos. Use um agente de limpeza, se necessário.
Certifique-se de que a esfera de referência esteja livre de resíduos do agente de limpeza.

Intervenções mais especificas, como limpeza de patins e sistema de alimentação pneumática, troca de componentes dos sistemas de tração dos eixos, por exemplo, devem ser executados por técnicos treinados e habilitados.


Precisão tem preço

Adilson Pimentel Artigos Comerciais, Artigos Metrologia, Artigos Tecnicos Deixa sua mensagen   , , , , , , , , , , ,

O custo da compra de uma CMM ou AACMM, é apenas o custo inicial para implementação dessa tecnologia no seu processo produtivo. Esta é uma observação importante, que normalmente é desconsiderada nas etapas de planejamento para a escolha e compra dessa tecnologia. Os custos após a compra independem se você planeja comprar uma CMM ou AACMM nova ou usada.

O custo de treinamento é o primeiro a ser considerado. Normalmente este custo aparece juntamente com a compra. Mas há uma tendência de minimizar, diminuindo o tempo dessa etapa. Então minimizar o tempo de treinamento, justificando pelo tempo e custo, terá impacto direto no aproveitamento de todo o potencial do equipamento adquirido.

Uma vez instalado, funcionando e metrologistas, devidamente treinados, deverão ser considerados os custos periódicos e eventuais necessários para a manutenção e atualização do conjunto (HW+SW).

Atualização e/ou manutenção do software (SW), é um ítem normalmente desconsiderado como custo. Há pelo menos, duas consequências diretas dessa desconsideração. Uma, é o custo elevado de um chamado emergencial para manutenção ou suporte. A segunda é descobrir que o custo para atualização do software tem valor importante quando se passa longo tempo da compra do equipamento.

Manutenção do hardware (HW) é outro custo desconsiderado durante o planejamento. Manutenção de equipamentos como CMM’s e AACMM’s, assim como equipamentos de tecnologia avançada, devem ser executadas por técnicos habilitados e experientes. Chamados emergenciais tem custo elevado. E por experiência, sabemos que manutenção preditiva evita e/ou minimiza manutenções corretivas.

E aqui vai uma observação. Nos últimos anos as empresas tem oferecido contratos anuais se suporte e atualização, que em geral, tem custo menos elevado e a vantagem do planejamento desse custo.

O custo com calibração e/ou certificação é um custo frequente enquanto o equipamento estiver em pleno uso. Normalmente os fabricantes recomendam que ajustes geométricos e calibração sejam executadas anualmente. Mais uma dica, este custo pode ser minimizado, se o metrologista acompanha e conhece a performance da CMM ou AACMM durante um período entre uma calibração e outra, e assim alterar a freqüência de calibrações para minimizar este custo.

E ao final um custo que é de longe, o mais desconsiderado; a remuneração do metrologista responsável pela operação e resultados emitidos pelo investimento em uma CMM. O investimento alto tem por necessidade, ter à frente do equipamento um profissional com alto nivel de conhecimentos, basta verificar nas exigências de conhecimentos e habilidades em anúncios de cargos para metrologistas. E aqui uma observação de alguém que atua em instalações e treinamentos para metrologistas de cmm’s. O pior aspecto para a empresa que investe um alto valor em uma cmm é a alta rotatividade dos metrologistas.

Os aspectos de custo de um equipamento de medição por coordenadas, indicados acima, além daqueles de menor impacto como reposição e/ou compra de acessórios, devem ser considerados para que a compra do equipamento não se torne um problema e sim, uma decisão para agregar valor ao produto final.


Metrologista de CMM na ind4.0

Adilson Pimentel Artigos Tecnicos Deixa sua mensagen   , , ,

Me parece que a onda chegou. Com muito mais frequência, estamos vendo artigos e mais artigos sobre indústria 4.0. Um bom aspecto disso é a disseminação da ideia. Outro bom aspecto é que especialistas dos mais variados setores começam a compartilhar conosco, os conhecimentos e perspectivas nos vários setores, acerca do que é conhecido como a 4a revolução industrial.

Mas na prática, o que muda ou deveria mudar no seu dia a dia de trabalho em um laboratório ou sala de metrologia?
Primeiramente é aproveitar essa grande quantidade de informações conceituais e identificar o que já está adequado ou, o que ainda falta para entrar de vez na Ind 4.0.

Se você utiliza uma cmm, saiba que tem nas mãos um dos equipamentos mais versáteis e importantes em uma metrologia, portanto a possibilidade de alavancar a evolução na empresa em que atua. Por uma cmm, instalada em uma sala de metrologia média, medem-se peças de set-up, calibres ou dispositivos de montagem, peças das várias etapas do sistema produtivo, peças finalizadas, etc… Observe então, a grande quantidade de informações geradas por uma cmm. Mas, algumas perguntas inevitáveis:
A grande quantidade de informação gerada, é correta? É confiável? É disponibilizada de forma rápida e eficiente?

Sugiro um exercício para identificar o quanto seu processo de medição está avançado.
Digamos que uma das funções é medir peças para alimentar o sistema de dados estatísticos (CEP, por exemplo):
1- existe um programa de medição específico para a peça recebida ou deve criar um programa toda vez que recebe uma peça?
2- se existe um programa, é fácil identificar e buscar o programa específico para a peça recebida?
3- existe dúvidas sobre a fixação ou posicionamento para medição?
4- ainda sobre o programa, há medições manuais ou o programa é executado totalmente em modo automático (cnc) ?
5- sobre os resultados, o relatório deve ser impresso ou deve ser em forma de dados (txt, por exemplo) ?
6- a forma como esses dados são indexados e guardados é automatizado ou é manual?
7- como os resultados são introduzidos no sistema estatístico, digitados ou diretamente enviados da cmm?
9- e finalmente, quanto tempo demora entre a medição e os resultados chegarem no setor interessado, para que então sejam base para uma decisão?

Estes são apenas alguns dos questionamentos que nós metrologistas podemos fazer acerca do nosso processo de medição para avançar em direção da organização necessária para a ind4.0. Observe que nem falamos ainda, da necessidade de investimentos.

Mas se já existe um nível de organização considerável, é hora de começar a pensar em ferramentas e/ou sistemas como o Metrology Gate, que trazem a aplicação de [big data], um dos pilares da Ind 4.0.

Insisto em dizer que a onda 4.0 chegou e para quem tem a disposição em evoluir, este é o momento. O metrologista, em geral, é um profissional privilegiado em termos de acesso a grande quantidade de informações dos processos em que atua, portanto tem a possibilidade de auxiliar e/ou impulsionar a implantação da Ind 4.0.

Adilson Pimentel, metrologista.


E por falar em Ind 4.0…

Adilson Pimentel Artigos Metrologia Deixa sua mensagen   , ,

Levantamos para conhecimento este novo produto que está sendo lançado no mundo: Metrology Gate, parece que finalmente estamos passando da teoria para a pratica.

O produto foi apresentado pela primeira vez na feira IMTS 2018 em Chicago no site na empresa Lk Metrology.

Veja o site www.metrologygate.com e um video promocional bem interessante.


Eu, Metrologista na indústria 4.0

Adilson Pimentel Artigos Metrologia, Artigos Tecnicos 3 Comentários , , , ,

Eu, Metrologista na indústria 4.0

Industry 4.0 and industrial internet of things concept with vector illustration of a connected digital world, Copyright https://www.manufacturingglobal.com/leadership/leadership-40-training-revolution

Indústria 4.0 é uma realidade, mesmo que na prática ainda não estejamos inseridos nessa revolução, precisamos nos preparar.
O conceito ou o termo não é tão atual, foi usado pela primeira vez em 2011 e uma pesquisa rápida pela Internet já possível de nos atualizar sobre o conceito e histórico da 4a revolução industrial.

Uma realidade incômoda, pouco difundida, é a posição do Brasil em relação ao avanço indústrial. Se você está familiarizado com o histórico da evolução da indústria, basta observar de forma ampla o processo produtivo em que atua. Se este processo é altamente automatizado, parabéns você atua em uma empresa compreendida no que seria a indústria 3.0, realidade muito a frente da maior parte da indústria nacional, que está situada na transição do que seria a indústria 2.0 para a indústria 3.0, conforme especialistas.

“A boa notícia é que não precisaremos passar por todo o processo de modernização fabril ocorrido nos países desenvolvidos nas últimas décadas para poder abraçar as tecnologias da Internet Industrial e da Indústria 4.0. Podemos e devemos queimar etapas. O que não podemos fazer é ignorar essa revolução se quisermos preservar a indústria presente no Brasil e prepará-la para esse novo panorama competitivo. – José Rizzo, fundador da Pollux”

Neste ponto começo a pensar como eu, metrologista, posso contribuir para a viabilização e/ou a análise do impacto dessa transição no processo em que atuo. O metrologista é um profissional altamente inserido na qualidade do processo produtivo, basta observar os requisitos técnicos, acadêmicos e experiência requisitadas para preenchimento de um cargo de metrologista.

Como fazer então?
Na prática a metrologia já é o centro de dados [big data] do processo produtivo em geral. Ali são coletados todos os dias, dados de todas as peças, estações de trabalho, calibres, etc… Tudo o que tem efeito no processo produtivo deve e é medido. Tais dados são gerados e emitidos através de relatórios ou enviados para alimentar sistemas estatísticos, em qualquer uma das alternativas, a análise e tomada de ação não é imediata. Agora, e se tais dados forem imediatamente disponibizados para cada posto de trabalho em tempo real?
Agora imagine que sou um metrologista de uma cmm. Será que as rotinas de medição que utilizo todos os dias, são bastante otimizadas para evitar erros de alinhamento, posicionamento ou mesmo a medição de uma peça incorreta? Será que disponibilização dos dados medidos é feita forma inequívoca e estruturada?
Estes são apenas alguns exemplos de análise ou verificação do quanto meu processo de medição está avançado em direção a indústria 4.0.

Uma vez que é consenso, de que a indústria brasileira em geral não terá uma transição imediata, ainda temos muito trabalho a fazer e muito trabalho a fazer tem sinônimo de oportunidades de crescimento profissional e de negócios. Eu, metrologista, justificado por todo o contexto de conhecimento, posicionamento no processo produtivo e ferramentas à disposição, tenho a oportunidade de contribuir com muito peso na transição para a indústria 4.0.

Adilson Pimentel, Metrologista.

Copyright https://www.ibtimes.co.uk/mind-gap-industry-4-0-future-manufacturing-1665243

 


20 ° C – Um breve histórico da temperatura de referência padrão para medições dimensionais industriais

Adilson Pimentel Artigos Metrologia, Artigos Tecnicos Deixa sua mensagen   , ,

Um dos princípios básicos da metrologia dimensional é que uma dimensão parcial muda com a temperatura devido à expansão térmica. Desde 1931, os comprimentos industriais foram definidos como o tamanho a 20 ° C.

O artigo “20 °C—A Short History of the Standard Reference Temperature for Industrial Dimensional Measurements” discute a variedade de temperaturas padrão que estavam em uso antes desses dados, os esforços de C.E. Johansson para atender a essas variações e o do National Bureau of Standards para levar os Estados Unidos ao eventual padrão mundial.

Traduzido de:

20 °C—A Short History of the Standard Reference Temperature for Industrial Dimensional Measurements


Assista a “Arco – Transformação de modelos” no YouTube

Adilson Pimentel Arco Deixa sua mensagen   , , , , ,

Transformando um modelo 3D no Arco


Como você escolhe suas pontas de medição?

Claudio Delvo Artigos Tecnicos Deixa sua mensagen   , ,

Pontas de MediçaoSAIBA COMO ESCOLHER AS PONTAS IDEAIS PARA CADA MEDIÇÃO E TIPOS DE MATERIAIS EXISTENTES. 

As pontas de medição são elementos fundamentais para a correta coleta de pontos e por conseqüência uma medição confiável.

Constantemente são consideradas como um elemento de pouca significância entre os elementos que participam da precisão da máquina CMM, mas, mesmo na sua aparente simplicidade as pontas de medição tem características que precisam de muita atenção.

A três principais características das pontas tradicionais do mercado são:

  •  Esfera de contato, amigavelmente chamada de “bolinha” ou “rubi” pelo material utilizado em sua fabricação;
  • Haste que determina o comprimento da ponta;
  • Medida da Rosca que se aplica para cada tipo de equipamento ou apalpador (M2, M3, M4, M5 e M6).

 

Estas características precisam ser escolhidas utilizando uma regra simples, clara e eficaz. “Usar a maior esfera possível associada à menor haste possível”.

As razões que levam a esta decisão estão na mecânica do contato da ponta com a peça. Sabemos que a medição em CMM é dinâmica e que, para realizar um toque, a máquina encosta na peça e uma vez aberto o contato do apalpador, ela volta automaticamente ou, em caso de máquinas manuais, é o próprio operador que retira a ponta para ir ao toque seguinte.

Durante esta fase, por mais delicada e amortecida que seja, a ponta recebe um esforço mecânico, uma verdadeira colisão que determina flexões da haste. São as suas características mecânicas que reduzem estas flexões quase a um valor nulo, por isso um material como alumínio não seria adequado para a haste.

Os materiais que geralmente são utilizados para hastes:

Aço inoxidável

  • Fibra de carbono
  • Cerâmica
  • Metal Duro.

A escolha do material é baseada na condição de uso, pois, como sempre em Metrologia não se tem uma solução absoluta, mas tudo é relativo à aplicação. 

  O Material  mais eficaz é a fibra de carbono, pois pode ser usada na fabricação de pontas muito compridas  garantindo um peso muito reduzido e tendo um desvio térmico muito pequeno.

Devido às restrições de diâmetro da haste (que precisa ser conectada a uma base em aço) a fibra de carbono não se aplica em pontas menores, geralmente utilizadas em pontas acima de 50 mm de comprimento e esferas com diâmetros maiores que 4 mm.

O material mais comum na linha de pontas de medição de comprimentos entre 10 e 30 milímetros é o aço inoxidável. Este material permite a usinagem de haste para que possa hospedar tranquilamente esferas de diâmetros pequenos. A grande vantagem da escolha do aço é que, além de sua rigidez consistente, a haste é usinada em um único bloco sem necessidade de junções do corpo da ponta com a base da rosca.

Para diâmetros de esfera abaixo de 1,0 mm o melhor material que pode ser utilizado, mantendo a devida rigidez é o Metal Duro, pois diâmetros de haste tão pequenos seriam dificilmente construídos com cerâmica ou em aço inox.

Porém, diâmetros de esfera acima de 30 mm, o peso tanto do aço quanto do Metal Duro começa a ter uma desvantagem relevante e podem induzir a falsos toques durante a movimentação da máquina, obrigando assim o operador a escolher sensores mais rígidos, diminuindo a repetitividade do equipamento, já que a força necessária para abrir o contato aumenta.Pontas de Mediçao

A partir de 30mm de comprimento a cerâmica representa uma boa alternativa, pois é rígida, leve e não tem significativos desvios térmicos, inclusive, devido a sua rigidez muito alta, quebra muito facilmente durante as colisões, esse material absorve o impacto e minimiza assim os reflexos no sensor, atuando muitas vezes como um “fusível” mecânico.

O fenômeno das colisões é outro fator que pode afetar a precisão da haste e os resultados da medição, pois uma colisão utilizando uma ponta de aço pode entortá-la de forma imperceptível, e tranquilamente agregar vários centésimos de erro na medição. Por esse motivo, após uma colisão particularmente forte é sempre aconselhável medir a esfera de calibração para conferir o estado das pontas ou até mesmo re-calibrar os apalpadores.

Voltando a escolha das pontas de medição e seguindo a regra acima exposta, o diâmetro da esfera precisa ser o maior possível, isto é, para evitar influências da rugosidade da peça durante a captura dos pontos e também para aumentar a diferença entre diâmetro da haste e o rubi, aumentando assim a tolerância mecânica contra possíveis toques indevidos da haste em lugares críticos.

Existem pontas construídas de acordo com particularidades das medições e de acordo com as necessidades das características a serem medidas. Elementos profundos como cilindros ou cavidades são medidos com pontas semi-esféricas de diâmetro 18 mm ou 30 mm.

O diâmetro dessas pontas é superior ao diâmetro dos sensores tradicionais (TP2, TP20, TESASTAR, ou TP6) e permite assim a penetração na peça sem necessidade de recorrer a extensões de pontas muito compridas que trazem problemas de peso e flexão.

O principal material na fabricação das esferas de medição é sem duvida o rubi sintético. Este material é um derivado do oxido de alumínio e tem uma dureza excelente e quase imbatível comparado com outros materiais.

Esta característica, que faz que o rubi seja em geral o melhor material, acaba sendo uma desvantagem quando usado em processo de escaneamento continuo no qual o contato esfera/peça é constante durante a medição.

Se a peça for feita de um material mais macio como o alumínio, a dureza do rubi acaba “extraindo” material da peça criando assim um anel de alumínio em volta da esfera.

Pontas de MediçaoEsta sujeira altera a forma e diâmetro original da esfera, por isso o material mais indicado em aplicações de escaneamento em alumínio é o Nitrito de Silício, que não mostra o fenômeno de “extração” de alumínio durante a medição.

Fatalmente, como comentado anteriormente, não existe uma única solução, pois mesmo o Nitrito de Silício tem a suas desvantagens mecânicas (além dos fatores custo).

Se for utilizada para escaneamento em peça de material ferroso (ferro fundido, aço, etc.) a esfera em Nitrito de Silício apresentará desgaste muito rapidamente devido a abrasão, e por esta razão, se for escanear estes tipos de materiais, deve-se optar pela esfera em Zircônio que tem uma dureza parecida, mas não apresenta os mesmos desgastes.

Considerando todos estes fatores durante a escolha das pontas de medição, junto com a boa prática de limpeza da esfera de medição antes de iniciar as medições, auxiliam na continua busca para eliminar os microns de erros durante as medições tridimensionais.

 


Como escolher um bom Software para o Braço de medição?

Claudio Delvo Artigos Comerciais Deixa sua mensagen   ,

 

Modelo CAD no ARCOCAD

Atualmente a escolha do software para o braço de medição se dá por diversos fatores e uma escolha errada traz sérias consequências.

Muitas empresas acabam comprando um determinado software, não pela qualidade ou pela relação custo x benefício, mas pela imposição de seus clientes que exigem a padronização de seus relatórios. Esta ação pode trazer consequências negativas, pois muitas vezes estes softwares são extremamente caros e complexos para aplicações de medição manual.

Outro fator que pode definir a compra de um determinado software é a preferência do operador ou Metrologista, no entanto, o perigo está na dependência da empresa por esta mão de obra tão específica e sem ele esse software pode se tornar um grande problema na seleção e treinamento de novos profissionais.

Recentemente a Italiana Metrostaff lançou um software de baixo custo e fácil operação para máquinas manuais (Braços e CMM`s) de nome Predict, entendendo a problemática existente no mercado na contratação de mão de obra e na dificuldade de liberação de recursos para investimento nesse item intangível no laboratório dimensional.

Para a boa escolha de um software, deve-se atentar a diversos fatores como a Praticidade de operação, presença de suporte técnico rápido, recursos e ferramentas indicadas para sua aplicação, custo dentro da realidade, a propriedade do software e não autorização de uso por tempo determinado, custos de renovação, etc.

Desta forma o investimento se justifica e ao invés de desperdiçar recursos escassos da Metrologia em softwares com recursos que jamais serão utilizados, deve-se optar por um produto onde o investimento está baseado na racionalidade e não no desejo ou imposição pessoal.